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Motivation 

• Use of GPUs growing! 

– Extreme-Scale Computing, Mobile Devices,… 

– High Compute Rates, Parallelism 

• This work : how to design correct GPU programs? 
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CPU program 
 
void inc_cpu(float* a,  
 float b, int N) { 
  for (int idx = 0; idx<N; idx++) 
    a[idx] = a[idx] + b;  } 
 
void main() { 
  ..... 
  increment_cpu(a, b, N); } 

CUDA program 
 
__global__ void inc_gpu(float* A, float b, int N) { 
  int tid = blockIdx.x* blockDim.x+ threadIdx.x; 
  if (tid < N) 
    A[tid] = A[tid] + b; 
} 
 
voidmain() { 
  ….. 
  dim3dimBlock (blocksize); 
  dim3dimGrid( ceil( N / (float)blocksize) ); 
  increment_gpu<<<dimGrid, dimBlock>>>(a, b,    
N); 
} 
 

Example: Increment Array Elements 

Contrast between CPUs and GPUs 
Fine-grained threads 
scheduled to run like this: 
tid = 0, 1, 2, 3, … 
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GPU Computation Model 
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Why is GPU Programming  
Error-Prone? 

• Multi-threaded and shared memory 

• Thread synchronization.  

– Barrier 

– Atomic operations  

• Safety properties:  

– Races 

– Assertions  Our focus!  
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Schedules Are Equivalent in  
Race-free programs (“DRF theorems”) 
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Sequential Scheduling [Attiya, 1994] 



Race Detection by Single Schedule 
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Explore ONE schedule is sufficient to detect races if there is any.  
                                                                [Adve, 1991] [Li, PPOPP’12] 



Race Pruning by Introducing Barriers 
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Barriers don’t prevent Inter-block Race 
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Needs of Critical Sections 
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Atomics Based Synchronization Example 

v = tree[index]; 
if (v ≠ LOCK) then 
    if (v == atomicCAS(&tree[index], v, LOCK)) then 
        assert(v ≠ LOCK); 
         
        tree[index] = w;  // w ≠ LOCK  

Thread X 

Critical Section 

CSX 
lck(x) 

ulk(x) 

[Burtscher, 2011] 
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Number of Conflicts Could be Many!! 
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Schedule Exploration is Needed! 

• Previous work 

– Barrier based synchronization 

• Explore one schedule. 

• Our work 

– Barrier+atomic based synchronization 

• Atomic operations introduce conflicts  

• Explore multiple schedules.  

• Need a good scheduling strategy.  
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Our Contributions 

• Conflict-directed Delay-bounding (CD) 
scheduling strategy.  

– Checks safety properties with synchronizations 
using barriers+atomic.  

• Operational semantics of CD scheduling. 
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Intuitions of CD Scheduling 
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Find another schedule that we visit X2  X1 and Y2  Y1.  



Background: Sequential Scheduling 
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CD Scheduling 
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CD Schedule: X2  X1 and Y2  Y1.  
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High-Level View of CD Scheduling 

Sequential 
Schedules 

N-delay 
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0-delay Schedule: D = [ ] 
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T 0 T 1 T 2 
Barr 0 
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1-delay Schedule: D = [ X1 ] 
Block 0 

T 0 T 1 T 2 
Barr 0 

Barr 1 

Barr 2 

Block 1 
T 0 T 1 T 2 

Barr 3 

Barr 4 

Barr 5 

A conflict is detected after D = [ ]: Y1  Y2. 

D = [ ] 
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2-delay Schedule: D = [ X1, Y1 ] 
Block 0 

T 0 T 1 T 2 
Barr 0 

Barr 1 
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Barr 3 
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1-delay Schedule: D = [ Y1 ] 
Block 0 

T 0 T 1 T 2 
Barr 0 

Barr 1 

Barr 2 
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No conflict is detected after D = [ ]  

D = [ ] 
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Operational Semantics of CD 

• Opsem of Scheduling given in our paper 

– Different scheduling options (e.g. which thread to 
run next) captured using uninterpreted functions 

• Limitation of current CD approach:  

– Does not address unfair CUDA runtimes 
[Habermeir, Knapp, ESOP’13] 

– Will be addressed in our future work 
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Example: Buggy N-body Simulation 

• We planted the following bug in N-body code 
[Burtscher, GCG’11] 

1. v = tree[index]; 
(a long section of code here…)  

2. if (v ≠ LOCK) then 

3.     v = tree[index]; 

4.     if (v == atomicCAS(&tree[index], v, LOCK)) then 

5.         assert(v ≠ LOCK); 

 

6.         tree[index] = w;  // w ≠ LOCK  
32 
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Example: Buggy N-body Simulation 

1. v = tree[i]; 
2. if (v ≠ LOCK)  
3.   v = tree[index];  
4.   if (v == CAS(…))  
5.     assert(v ≠ LOCK);  

 
6.     tree[index] = w;   

T0 T1 

Line 2: v = 0 

Line 3: v = LOCK 

Line 4:  
v = tree[i] = LOCK 

Line 5:  
assert(v ≠ LOCK) 

Line 5:  
(tree[i] == LOCK) 

FAIL! 
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Experiments: Bug-Free Benchmarks 

Benchmark LOC 
No Heuristic Heuristic 

# schedules result # schedules result 

aMin 20 431 Verified 431 Verified 

aMinUpdate 35 653 Verified 294 Verified 

bintree 75 835 Verified 405 Verified 

TSP 130 114 Verified 60 Verified 

N-body 260 1195 Verified 336 Verified 

• Heuristic: pick “conditional atomic operation” conflicts (atomicCAS) 
• Errors are detected using user-provided assertions 
• 3 blocks and 1 thread per block, delay-bound is 2 
• Running times ranging from 5 to 5000 seconds 
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Experiments: Buggy Benchmarks 

Benchmark 
No Heuristic Heuristic 

# schedules result # schedules result 

aMin 107 Bug caught 107 Bug caught 

aMinUpdate 6 Bug caught 4 Bug caught 

bintree 14 Bug caught 202 Omission 

TSP 4 Bug caught 4 Bug caught 

N-body 448 Bug caught 126 Bug caught 
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Related Work 

• Exploring Seq. Schedules under Race-Freedom 
– General Concurrency Arena: 

• Adve and Hill, ’91 

• “DRF theorems” in Java Memory Model studies 

– GPU Arena: 
• Li and Gopalakrishnan, FSE’09 

– Tool : “PUG” 

• Li, Li, Gopalakrishnan, Rajan, Ghosh, PPoPP’12 
– Tool :  “GKLEE” 

• Betts, Chong, Donaldson, Qadeer, and Thomson, SPLASH’12 
– Tool :  “GPUVerify” 
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Related Work 
• Scheduling Methods: 

– DPOR 

• Flanagan and Godefroid, POPL’05 
(http://users.soe.ucsc.edu/~cormac/)  

– Sequentialization 

• Lal and Reps, CAV’08     

• Torre, Madhusudan, Parlato, CAV’09 

• Nagafi, Hu, Rakamaric’, SPIN’10  

– Delay Bounding:  Emmi, Qadeer, Rakamaric’, POPL’11 

• This work in comparison with above scheduling methods: 

– Specializes bounding strategy to exploit warp-level sequential 
scheduling (GKLEE, PPoPP’12)  

– exploits conflicts (Sen, PLDI’08) to schedule around CUDA Atomics  

37 

http://users.soe.ucsc.edu/~cormac/


Summary 

• Introduced Conflict-directed Delay-bounded 
(CD) scheduling search strategy for handling 
atomics 

• Implemented in GKLEE 

– Finds bugs in realistic benchmarks 

• Heuristic for picking relevant conflicts 

– Works well in practice 
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Future Work 

• Extend CD scheduling to other contexts 

– Hybrid programming 

– Recursive calls in GPU kernels 

• Address CUDA unfair runtimes 

• Include other scheduling strategies such as 
exploiting thread symmetry  
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Thanks.  
 

Question?  
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The following slides are  
backup slides. 
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Motivation 
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GPU Computation Model 
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GPU Computation Model 

Thread 
0 …. 

Thread 
1 

Thread 
n-1 

Block i 

Shared Memory 

Thread 
w-1 … 

Warp 0 

We currently consider warp size is 1.  
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About Handling Warps 

• Our current opsem is based on warp size = 1 

• GPU (CUDA) programmers should not assume that 
warp size is fixed to a certain number 

• Thus, assuming warp size = 1 in testing is a heuristic 
for identifying most races/bugs 

• By incorporating the predicated form of CUDA 
semantics proposed in GPUVerify [Donaldson, 
2012], our opsem could also handle warps 
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Operational Semantics of CD 

• Blocks and Threads are organized as a queue of 
queues 

• Ia, Ib,… are instructions. “T0: Ia” denotes that T0’s 
current instruction is la 

• hd(D) is the delay set of the current schedule, 
which is a queue of instructions 

Block 0 

T0: la T1: lb T2: lc 

Block 1 

T0: lp T1: lq T2: lr 

hd(D) 

lx ly 
 Queue Head Queue Tail  
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Operational Semantics of CD 

• The 1st thread of the 1st block in the queue is 
always first considered for scheduling 

• Check if Ia is equal to Ix 

Block 0 

T0: la T1: lb T2: lc 

Block 1 

T0: lp T1: lq T2: lr 

 Queue Head Queue Tail  lx ly 

hd(D) 
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Operational Semantics of CD 

• Precondition: la = lx 

– Delay the execution of Ia 

• Each instruction in hd(D) is only delayed once 

Block 0 

T1: lb T2: lc T0: la 

Block 1 

T0: lp T1: lq T2: lr 

 Queue Head Queue Tail  ly 

hd(D) 
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Operational Semantics of CD 

• Precondition: la ≠ lx and current instructions of 
all threads in the queue head are barriers, i.e., 
Ia = Ib = Ic= barrier 

– Schedule all threads in the queue head block 

Block 0 

T0: la T1: lb T2: lc 

Block 1 

T0: lp T1: lq T2: lr 

 Queue Head Queue Tail  lx ly 

hd(D) 
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Operational Semantics of CD 

• Precondition: la ≠ lx and there is a thread in the 
queue head whose current instruction is not a 
barrier 
– If Ia is not a barrier, execute it 

– Otherwise, the 1st thread of the 1st block (T0) yields 

Block 0 Block 1 

T0: lp T1: lq T2: lr 

 Queue Head Queue Tail  lx ly 

hd(D) 

T1: lb T2: lc T0: la 
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Related Work:  
Other GPU Operational Semantics 

• Modeling warp execution and divergence.  

– Predicated execution model [Alastair and Qadeer, 
2013].  

• A GPU verification tool, GPUVerify, is based on this 
semantics.  

– Stack-based execution model [Habermaier and 
Knapp, 2013].  

• Our operational semantics models sequential 
GPU simulation and scheduling strategies.  
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Comparison between CD Scheduling 
and Other Strategies 

• Vs. Dynamic Partial Order Reduction [Flanagan 
and Godefroid, 2005] 
– CD scheduling priorities schedule explorations 

with detected conflicts.  

• Vs. Race-directed [Sen, 2008] 
– CD scheduling bounds the # of contexts.  

• Vs. Context-bounded [Qadeer, 2005] 
– CD scheduling decides preemption locations with 

detected conflicts.  
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